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ABSTRACT

A time-varying filter is proposed which improves by 5 dB

upon traditional FRESH and Wiener filters when rejecting a

pulsed radar signal. The filter is a Time-Varying FRESH (TV-

FRESH) filter, which applies different sets of filter weights in

a periodic manner, with the same periodicities of the received

signal. Matching the periodicities of the filter to that of the

signal improves the rejection of interference, producing a bet-

ter estimate of the desired signal. The simulated results show

mitigating the interference from a radar signal to an Orthogo-

nal Frequency Division Multiplexing (OFDM) signal.

Index Terms— cyclostationary, radar, TV-FRESH, opti-

mal filter

1. INTRODUCTION

This paper proposes a novel filtering structure which is able

to exploit the cyclostationarity of signals with time-varying

statistics. The motivating example is a pulsed radar signal

interfering with an OFDM signal, a situation which will be-

come more common due to spectrum sharing [1]. The filter

proposed in this paper shows a 5 dB improvement over both

the FRESH filter and the Wiener filter.

The proposed filter is a time-vary FRESH (TV-FRESH)

filter, which exploits the cyclostationarity of the received sig-

nal and applies different sets of filter weights in a periodic

nature, similar to a polyphase filter bank. The periodicities

of the radar signaling, including its chirp rate and its Pulse

Repetition Frequency (PRF), are incorporated into the filter, a

capability unique to the TV-FRESH filter.

The novelty of the paper is described in the following list:

• The TV-FRESH filter creates the ability to exploit time-

varying cyclostationarity

• The filter structure applies weights in a periodic nature,

improving upon existing FRESH filters

• Gives a 5 dB gain in simulated results over traditional

filters
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• Provides a physical layer solution to the OFDM and

radar co-existence problem

• Does not require coordination between the OFDM and

radar transmitters

The exploitation of cyclostationary signals with time-

varying filters has been investigated prior. Almost Cyclosta-

tionary Signals (ACS) were described in [2] and the FRESH

filtering of ACS signals is described by [3], where the cycle

frequencies were no longer required to be harmonically re-

lated. Incorporation of conjugate-linear filtering [4] allowed

conjugate spectral redundancy to be exploited by the FRESH

filter [5]. Frequency domain and adaptive FRESH filters

were later developed. The frequency domain FRESH filter

was first described by [6] and adaptive versions in [7]. More

recently FRESH filters have been used for the equalization of

doubly-selective channels [8] and robust communications [9].

The remainder of the paper is outlined as follows. Back-

ground on cyclostationary signals and FRESH filtering is

given in Section 2. The TV-FRESH filter is proposed in in

Section 4. Simulated results are presented in Section 5 and

the paper is concluded in Section 6.

2. BACKGROUND

In this section background material is given on cyclostation-

ary signals and FRESH filtering.

2.1. Cyclostationary Signals

The cyclic autocorrelation function (CAF) is used to de-

termine second-order periodicity of frequency α is present

within x(t) [5],
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The cyclic autocorrelation is also component of a generalized

Fourier Series [3] of the autocorrelation function,

Rx(t, τ) =
∑

α

Rαx (τ)e j2παt, (2)



and related through:

Rαx (τ) = lim
T→∞

1

T

∫ T
2

− T
2

Rx(t, τ)e− j2παtdt. (3)

Wide sense stationary signals contain no second-order

periodicities, meaning the autocorrelation function does not

contain any additive sine wave components of frequency

α , 0. Therefore their autocorrelation function can be writ-

ten as [10],

Rx(t, τ) = R0
t,x(τ). (4)

Wide sense cyclostationary signals contain second-order pe-

riodicity, and as such the autocorrelation function is periodic,

Rx(t, τ) =

∞
∑

n=−∞

Rαn
x (τ)e j2παnt, (5)

where the cycle frequencies {αn} are all commensurate [10]

with period T ,

αn =
n

T
, n = 0,±1,±2, . . . . (6)

This can be interpreted as a Fourier series, with coefficients

R
n
T
x (τ) and frequencies n

T
[11],

Rx(t, τ) =

∞
∑

n=−∞

R
n
T
x (τ)e j2π n

T
t. (7)

The cyclostationarity of many analog and digital single car-

rier signals are described in [12, 13]. A signal is almost cy-

clostationary when the autocorrelation function is an almost

periodic function,

Rx(t, τ) =
∑

n∈A

Rαn
x (τ)e j2παnt. (8)

where the cycle frequencies A = {αn} may not be commensu-

rate [10].

2.2. FRESH Filtering

The ability to exploit the spectral redundancy and conjugate

spectral redundancy of ACS signals is described in [5]. The

FRESH filter is described by:

d̂(t) =

M−1
∑

m=0

am(t) ⊗ x(t)e j2παmt

+

N−1
∑

n=0

bn(t) ⊗ x∗(t)e j2πβnt.

(9)

The FRESH filter incorporates the periodicities α and β in the

signal x(t) to better improve the estimate of the desired signal,

making use of spectrally redundant information.

3. SIGNAL MODEL

A chirp signal is a complex exponential whose frequency is

swept over time with some period Tc. The model of the peri-

odic chirp signal is given by [14]:

c(t) =

∞
∑

m=−∞

e j2π fc(t−mTc)2

q(t − mTc), (10)

where fc is the rate of change in frequency, or the chirp rate,

Tc is the period of the chirp, and q(t) is a rectangular pulse of

length Tc. The change in frequency creates a form of time-

varying diversity which can be exploited with an appropriate

filter.

The sampled chirp signal is a discrete-time almost cyclo-

stationary signal, [14], and as such the discrete time chirp

c(kTs) can be represented by the generalized Fourier Series

[15],

c(kTs) =
∑

α

cαe
j2παkTs (11)

with discrete time cycle frequencies and conjugate cycle fre-

quencies,

α =
n

TsTc

, n = 0,±1,±2, . . . ,
TsTc

2
, (12)

β =
p

TsTc

, p = 0,±1,±2, . . . ,
TsTc

2
. (13)

The chirp signal d(kTs) has many cycle frequencies at all of

the harmonics of its chirp period Tc.

The periodicities of the OFDM signal are known to be

α = n
NT

, for n = 0,±1,±2, . . . ,±NT

2
where NT is the length

of the OFDM symbol in number of samples, including the

cyclic prefix [16].

4. TV-FRESH FILTER

The TV-FRESH filter uses a tapped delay line of length B in

order to exploit the periodic nature of the radar signal, and

the length B will be designed to match the periodicities of

the radar signal. The TV-FRESH is a frequency domain fil-

ter, with the input signal being segmented into B OFDM sym-

bols, Xl,0( f ), Xl,1( f ), . . . , Xl,B−1( f ), where l describes the sets

of frequency domain samples over time. The filter then esti-

mates the cth set of B frequency domain samples [9],

D̂l,c( f ) =

B−1
∑

b=0
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(14)



The TV-FRESH has two sets of filters, Gc,b,u( f ) and Hc,b,u( f ),

corresponding to the filters am(t) and bn(t) from (9). The cycle

frequencies αc,b,u and βc,b,u also correspond to the periodici-

ties α and β of (9). The periodicities αc,b,u and βc,b,u are now

time-varying also. For example, α1,3,k represents the kth pe-

riodicity between the third and first sets of frequency domain

samples, Xl,1( f ) and Xl,3( f ). The values Uc,b and Vc,b repre-

sent the number of periodicities for αc,b,u and βc,b,u that are

included in the filter.

The MMSE weights of the TV-FRESH filter are found by

forming the Mean Squared Error (MSE), taking its derivative

and setting equal to zero, as in [9]. The filter error for OFDM

symbol c is defined as:

El,c( f ) = Dl,c( f ) − D̂l,c( f ), (15)

The MSE is minimized by taking the derivative with respect

to the two sets of filters and setting equal to zero,

∂

∂G∗
c,p,k

( f )
E

{

El,c( f )E∗l,c( f )
}

= 0, (16)

∂

∂H∗c,m,n( f )
E

{

El,c( f )E∗l,c( f )
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= 0. (17)

Substituting the conjugated filter error (15) into the partial

derivatives results in two orthogonal projections,

E
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= 0, (18)

E
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(
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Substituting the filter error (15) into the projections (18) and

(19) gives the filter weight design equations,

S
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m = 0, 1, . . . , B − 1; n = 0, 1, . . . ,Vc,m − 1.

The theoretical SINR at the output of the filter (14) is

given by:

λl =

E
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∣
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(a) The output SINR with an AWGN channel.
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(b) The output SINR with a Rayleigh fading channel.

Fig. 1: The SINR comparison for the filtering methods.



5. SIMULATION RESULTS

The interference scenario is an OFDM signal being interfered

with by a radar chirp signal. The first case only considers

an Additive White Gaussian Noise (AWGN) channel, while

the second is a Rayleigh frequency selective fading channel

with weights [−1.21−1.37 j, 0.58−0.61 j, 0.06+0.06 j] on the

OFDM signal and [0.72−0.86 j, 0.09−0.63 j,−0.18−0.53 j] on

the interference. The OFDM signal uses 16 subcarriers with

a cyclic prefix length of 8 samples. The chirp is 128 samples

long, and the radar pulse period is 512 samples. The SIR =

-10 dB.

A small number of subcarriers are used for illustrative

purposes, while increasing the number of subcarriers will im-

prove the SINR at the cost of additional complexity.

At large input SNR values, the gain of the TV-FRESH

over the traditional FRESH filter is 5 dB. The TV-FRESH is

able to effectively remove the radar signal perfectly at large

input SNR values and with B = 4, with the output SINR be-

ing nearly equivalent to the input SNR value. The Rayleigh

channel gives the TV-FRESH a 4.5 dB improvement over the

traditional FRESH.

6. CONCLUSION

An optimal TV-FRESH filter has been proposed for sampled

GACS signals. The TV-FRESH filter is able to track and ex-

ploit the cyclostationarity and time-varying statistics of the

radar signal, providing a gain of 5 dB over the FRESH fil-

ter and Wiener filter. The gain comes from the ability of the

TV-FRESH to apply time-varying sets of filter weights ac-

cording to the periodicities in the received signal, a capability

the FRESH filter and Wiener filters do not have.

Future work would include incorporating an adaptive

feedback algorithm into the filtering structure, exploiting

time-varying spectral redundancy in the spatial domain, and

adapting the filtering structure itself as signaling parameters

of a radar waveform change.
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